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1. Summary & Introduction
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• We analyse models to estimate one-day 1%-return-quantiles ( 99% VaR risk measure)

• We propose copula-based models using rolling windows of 250 trading days for calibration:

– Meta-Gaussian models (Gaussian copula)

– Meta-Student t models (Student t copula)

• Copula calibration:

– Pseudo-log-likelihood method (MLE)

– Method-of-moments (MoM)

• EGARCH-volatility adjusted returns

• Data: daily returns of 21 financial assets from 5 January 1990 to 26 November 2024

• Unconditional and conditional hit tests 

• Best performance: meta-Student t model calibrated with the method-of-moments (MoM)
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2. Models
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• We use nine models to estimate the 1%-quantile for daily portfolio returns



2.1. Volatility-adjusted returns
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• As an alternative to unadjusted historical log-returns,  i.e.  �� = ln ��
���	

= ln 
� − ln 
��
, 

these returns are adjusted to account for a changing level of volatility 

(Duffie and Pan, 1997, Hull and White, 1998, Alexander, 2008).

• We use an EGARCH (1, 1) model to estimate time series of volatility estimates

(Nelson, 1991).

In some few cases (223 cases, i.e 0.13% of the cases) the GARCH estimation did not 

converge  EWMA volatilities

• For every single trading day in our analysis, we calculate time series of volatility-adjusted 

returns, using a rolling window of 500 trading days. For trading days 251 to 500 the 

volatility-adjusted returns �̃� ����
����� are calculated based on unadjusted historical log-

returns �� ����
����� and the EGARCH-volatilities ��� ����
����� as

�̃� = �� ⋅ �����
���

 ∀ � ∈ 251, … , 500



2.2. Variance-covariance models
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• This approach assumes that asset returns are multivariate normally distributed.

• Here, the 1% return quantile for the next trading day, !�.�
,�#
, is estimated as

!�.�
,�#
 = $%&,� + �%&,� ⋅ Φ�
 ⋅ 0.01

where for our 21-dimensional portfolio with weights )* = 

�
 ∀+ ∈ 1, … , 21 ,

$%&,� = 

��� ∑ -′ ⋅ /0�0����12 is the expected one-day portfolio return and

�%&,� = -3 ⋅ 45 ⋅ - is the estimate for the one-day portfolio volatility (standard 

deviation of returns) with covariance matrix 45 based on the information until trading 

day � and

Φ�
 ≈ −2.326348 is the 1%-quantile of the standard normal distribution.



2.3. Historical simulation models
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• Historical simulation models do not make any assumption about the distribution of the 

portfolio returns. 

No parameters such as covariances or correlations are estimated.

• Firstly, historical portfolio returns are calculated for trading days � − 249 to �, using the 

portfolio weights of day � (in our case all weights are equal):

<%&,� = =� ⋅ -
where <%&,� is a column vector containing 250 historical portfolio returns, =� is a 250 x 21 

matrix containing the most recent 250 returns of the 21 financial portfolios and - is the 

weight-vector.

• The 1%-quantile estimate for trading day � + 1 is simply the 1%-quantile of the 250 most 

recent portfolio returns. In other words, the quantile estimate is based on the second- and 

third-lowest portfolio returns of the rolling window of 250 trading days.



2.4. Copula-based models
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• Copula-based models allow for modelling separately the univariate distribution functions of the 

marginal distributions and their copula, i.e. their „dependence structure“.

• Marginal distributions:

In our analysis these are the 21 return distributions of the financial assets, modelled as 

empirical distributions based on the 250 most recent volatility-adjusted return observations.

• Copulas:

– Gaussian copula: this is the copula implied by a multivariate Gaussian distribution (Gaussian 

marginal distributions combined with a Gaussian copula).

It has one (matrix) parameter: the correlation matrix >? (capital “Rho”)

– Student t copula: this is the copula implied by a multivariate Student t distribution. It has two 

parameters: the correlation matrix >� and the degrees of freedom @ (“nu”, a scalar 

parameter). The lower @ the stronger is the tail dependence. In fact, the Gaussian copula can 

be considered a special case of the Student t copula where @ → ∞.



2.4. Copula-based models
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• Copula Calibration

• We use two methods to calibrate copula parameters:

– The pseudo-log-likelihood method

Genest and Rivest (1993) and McNeil (2005)

The most widely used calibration method

Computationally intensive

– The method-of-moments (MoM)



2.4. Copula-based models
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• Pseudo-log-likelihood method

• A variant of the maximum likelihood estimation (MLE). In practice one often maximises the log-

likelihood as this is computationally less intensive and the optimisation yields the same results.

• In contrast to the standard MLE, one does not make any assumption on the specific functional form of 

the marginal distribution functions in the pseudo-log-likelihood method.

• Rather, the observations are transformed into so-called pseudo-observations in a first step. The 

pseudo-observations C*,� for asset + ∈ 1, … , 21 and trading day � ∈ 1, … , 250 are calculated from the 

volatility-adjusted returns �D*,� as

C*,� = 1
E + 1 ⋅ F GHDI,JKHDI,�

�

L�

where GHDI,JKHDI,� is an indicator function that take on a value of 1 if �D*,L < �D*,� and a value of 0 otherwise. 

In our analysis E = 250.

• In other words, the rank of the observation is divided by 251 to obtain C*,�. 



2.4. Copula-based models
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• Pseudo-log-likelihood method

• For the Gaussian copula, the correlation matrix >? is calibrated via numerical optimisation as

>? = argmax>S F  ln T>S Φ�
 U� + F ln 1
T Φ�
 C* , �

�


*�


���

��

with ln the natural logarithm function, T>S  the probability density function of a multivariate standard 

normal distribution with parameter (i.e. correlation matrix) >? , T the density function of a univariate 

standard normal distribution, Φ�
 the quantile function of a univariate standard normal distribution and 

U� = C
,�, C�,�, … , C�
,� a vector representing the joint pseudo-observations for trading day �.

• We use R-package copula and, here, function 

fitCopula(normalCopula(dim=21, dispstr=”un”), method=”mpl”)

to perform the maximum-log-likelihood estimation.

We refer to the so-calibrated model as model Gauss_MLE.



2.4. Copula-based models
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• Pseudo-log-likelihood method

• Student t copula

Unfortunately, the 

MLE-calibration of a 

high-dimensional Student t copula

is computationally very

intensive, i.e. time-consuming.

• Hence, we choose an alternative

approach:

– use >? as a substitute for >V
– Set @ = 3 without calibration

• We refer to so-calibrated model

as model t_MLE.
data source: Aussenegg and Cech (2012), table 1

21201612dimensions

19.312.13.70.9computing time in h



2.4. Copula-based models
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• “method-of-moments” (MoM): Not so computationally intensive.

• Gaussian copula

the elements W?,*X  of the Gaussian copula parameter >?  are calibrated as the pairwise 

Spearman’s rank-correlation coefficient between asset returns + and Y, W�,*X

W?,*X = W�,*X = 6
Z arcsin W*X

2
where W*X is the pairwise (Pearson) correlation coefficient between the pseudo-

observations.

• Student t copula

the elements W�,*X  of the Student t copula parameter >�  are calibrated as 

W�,*X = sin 1
2 ZW^,*X

where W^,*X is the pairwise Kendall’s rank-correlation coefficient (Kendall’s tau).

The MoM allows only the calibration of >�. We set the second parameter @ equal to 3.



2.4. Copula-based models
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• Copula simulation

For our four models (models 3.a, 3.b, 4.a and 4.b) and for every trading day analysed 

we simulate one million 21-dimensional tuples.

To reduce the variance of the Monte Carlo simulation we additionally construct 

antithetic variates (see e.g. Glasserman, 2003, pp. 205ff.)

This results in two million simulated values of 21-tuples with

C�* , _

where + ∈ 1, … , 2,000,000 and _ ∈ 1, … , 21



2.4. Copula-based models
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• Copula simulation

In a further step, we use the empirical distribution of the 250 most recent volatility-

adjusted return observation of every asset to simulate quantiles of asset returns.

• Then, we calculate for every simulated scenario portfolio returns

�̂%&,L = F )a · ca�
 C�*,a
�


a�


where )a are the portfolio-weights and ca�
 C�*,a are the empirical quantile functions of 

asset returns.

• Finally, we estimate next day‘s return quantile as the 1%-quantile of the two million 

simulated portfolio returns.
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3. Hit tests
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• We conduct hit tests for the estimates of the 1%-return quantiles.

• A “hit” (or “exception”) refers to those days where the realised return on trading day 

� + 1 is below the quantile-estimate based on data up to trading day �.

• Obviously, in a good model this should happen in roughly 1% of the cases.

• We use two types of hit tests:

– Unconditional hit tests

consider only the proportion of hits

– Conditional hit tests

examine the clustering of hits

• For every model we create hit-sequences d = e
, e�, … , e� where e� = 0 if no hit is 

observed and e� = 1 if a hit is observed on trading day �. Number of hits f =  ∑ e��*�
 .



3. Hit tests
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• Unconditional hit tests, g�: î = 0.01 where î = j
�

– hit test based on a binomial distribution (Campbell 2007, p.6)

– Kupiec test (Kupiec, 1995) , also known as proportion-of-failure (PoF) test

• Conditional hit tests additionally test the null hypothesis g�:  k�
 = k


where k�
 is the probability of observing a hit on day � (“today”) conditional of 

observing no hit on day � − 1 (“yesterday”), i.e. l e� = 1 e��
 = 0
and k

 = l e� = 1 e��
 = 1 .

– Christoffersen test (Christoffersen, 1998)
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4. Data
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• Daily log-returns of 21 financial assets from 5 January 1990 to 26 November 2024.

• The first 500 tuples are used for model-calibration.

• Quantiles are estimated for the period from 7 January 1992 to 26 November 2024, i.e. 

for 8,252 trading days, based on the return observations up to the trading day before.

• The financial assets can broadly be classified into five classes:

i. Foreign exchange (three assets)

ii. Blue-chip stocks (six assets)

iii. Stock-indices (three assets)

iv. Commodities (three assets)

v. Fixed-income instruments (six assets)

• We take a USD-investor perspective.



4. Data
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• 21 financial assets

– Low volatilities for fixed-income, high 

for stocks, indices, commodities.

– All returns are leptokurtic and not

normally distributed (Jarque-Bera).

– Pearson-correlations range from

-0.240 (DAX30, 5Y) to

0.953 (2Y, 3Y).

lowest returns

18. Mar 20209 Mar. 202016 Mar. 202020 Apr. 202012 Mar. 2020

-4.28%-4.37%-4.93%-5.72%-6,57%
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5. Results
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• Summary of model results

m�/m�(pq_Cfs_Y): the average ratio of the models’ quantile estimates m� in relation to the 

quantile estimate of model VC_unadj

u
v /u
v (pq_Cfs_Y): the average ratio of the models’ estimates for the mean lowest 2.5% 

return observations u
v in relation to the corresponding estimates of model VC_unadj



5. Results
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• Copula-based simulation models, MoM (models Gauss_MoM, t_MoM)

t_MoMGauss_MoM

90136f
1.09%1. 65%î



5. Results
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• Copula-based simulation models

(models Gauss_MLE, t_MLE, Gauss_MoM, t_MoM)

– In all cases the quantile estimate of the meta-

Student t models are below those of the meta-

Gaussian models.

On average 10.4% (model t_MLE) respectively 

10.7% (model t_MoM).

– Accordingly, the proportion of hits is lower.

– The results of the MLE-models are similar to 

those of the MoM-models.



5. Results
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• Unconditional hit tests

null hypothesis can be rejected at the 1% (**) or the 5% (*) significance level.
(a) The Kupiec and the Christoffersen test do not provide results due to the large number of hits and the large number of two hits on two consecutive trading days (E

). Based on the 

proportion of hits and the number of hits on two consecutive trading days we conclude that the null hypotheses for both tests can be rejected.

 We cannot reject the null hypothesis for the meta-Student t models.

 We reject the null hypothesis for all other models at the 1% significance level.



5. Results
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• Christoffersen test

null hypothesis can be rejected at the 1% (**) or the 5% (*) significance level.
(a) The Kupiec and the Christoffersen test do not provide results due to the large number of hits and the large number of two hits on two consecutive trading days (E

). Based on the 

proportion of hits and the number of hits on two consecutive trading days we conclude that the null hypotheses for both tests can be rejected.

 We cannot reject the null hypotheses for the meta-Student t models.



5. Results
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• Expected Shortfall:

in addition to the 1% return quantile ( 99% Value-at-Risk VaR), we calculate the

mean return below the 2.5% return quantile ( 97.5% Expected Shortfall ES).

On average the two values do not deviate strongly from each other.



5. Results
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• Expected Shortfall:



5. Results

30

• Computing time:

– The MLE- and MoM-models yield similar results.

– However, the latter are far less computationally intensive.



5. Results
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• Computing time:

– The computational advantage of MoM models also holds for higher dimensions

– Simulation study:

• Simulate 250 _-dimensional realisations of a Gaussian copula with pairwise correlation 

parameter W*,X = 0.5 ∀+, Y where  + ≠ Y
• Estimate copula parameters and simulate copulas (10x realisations and 10x antith. v.)
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6. Conclusion
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• We analyse the accuracy of nine models to estimate the one-day 1% return quantile.

• Five benchmark models

(three different variance-covariance models and two historical simulation models)

• Four copula models that combine volatility-adjusted returns with

a Gaussian or a Student t copula.

• Copula calibration: pseudo-log-likelihood (MLE) or method-of-moments (MoM)

• These models generate the daily return distribution of a 21-dimensional equally weighted mixed 

asset portfolio.

• The meta-Student t model calibrated with the method of moments outperforms the other 

models.

– It shows the best accuracy regarding the hit proportion and 

the independence of hit observations and

– it is computationally efficient



A dynamic MoM copula model approach for market risk estimates
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• We use two types of copulas:

– Gaussian copula

– Student t copula

• The Student t copula displays

positive “tail dependence”:

It assigns a higher probability to

joint extreme events than does the

Gaussian copula.

• The plots show standard normal

distributions combined by Gaussian

and Student t copulas.

Source: Cech (2006)


