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- 1. Summary & Introduction F H i

We analyse models to estimate one-day 1%-return-quantiles (= 99% VaR risk measure)
We propose copula-based models using rolling windows of 250 trading days for calibration:
— Meta-Gaussian models (Gaussian copula)
— Meta-Student t models (Student t copula)
Copula calibration:
— Pseudo-log-likelihood method (MLE)
— Method-of-moments (MoM)
EGARCH-volatility adjusted returns
Data: daily returns of 21 financial assets from 5 January 1990 to 26 November 2024
Unconditional and conditional hit tests

Best performance: meta-Student t model calibrated with the method-of-moments (MoM)
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«  We use nine models to estimate the 1%-quantile for daily portfolio returns

Table 1: Summary of Value-at-Risk models used

Model Model-type Return Data

VC _unadj Variance-covariance model (unadjusted) log-returns
VC_EWMA EWMA-variance-covariance model (unadjusted) log-returns

VC adj Variance-covariance model volatility-adjusted log-returns
HS unadj Historical simulation (unadjusted) log-returns

HS adj Historical simulation volatility-adjusted log-returns
Gauss_MLE Meta-Gaussian (MLE) volatility-adjusted log-returns
t MLE Meta-Student t (MLE) volatility-adjusted log-returns
Gauss_MoM Meta-Gaussian (method-of-moments) volatility-adjusted log-returns
t MoM Meta-Student t (method-of-moments) volatility-adjusted log-returns

Notes: Maximum-likelihood estimation (MLE) based on pseudo-observations for copula estimation in models Gauss_MLE and
t MLE.



- 2.1. Volatility-adjusted returns F H St

As an alternative to unadjusted historical log-returns, i.e. r, = In=t = In St —InS;_q,
t—-1
these returns are adjusted to account for a changing level of volatility

(Duffie and Pan, 1997, Hull and White, 1998, Alexander, 2008).

We use an EGARCH (1, 1) model to estimate time series of volatility estimates
(Nelson, 1991).

In some few cases (223 cases, i.e 0.13% of the cases) the GARCH estimation did not
converge > EWMA volatilities

For every single trading day in our analysis, we calculate time series of volatility-adjusted
returns, using a rolling window of 500 trading days. For trading days 251 to 500 the
volatility-adjusted returns {7 }7=20 are calculated based on unadjusted historical log-
returns {r.}1=>99 and the EGARCH-volatilities {6,}1=>20 as

6
Fo=1, - ;"0 vVt € {251,..,500}
t
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This approach assumes that asset returns are multivariate normally distributed.

Here, the 1% return quantile for the next trading day, Qg o1 ¢+1, iS estimated as

Qoove+1 = Hpre + Oppr - P71+ (0.01)

where for our 21-dimensional portfolio with weights w; = 2—11\7'1' €(,..,21),

Hpft = ﬁz,‘;:t_mg w' - 17, is the expected one-day portfolio return and

opre = /W' - Z¢ - W is the estimate for the one-day portfolio volatility (standard
deviation of returns) with covariance matrix £, based on the information until trading
day t and

®~1 ~ —2.326348 is the 1%-quantile of the standard normal distribution.
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 Historical simulation models do not make any assumption about the distribution of the
portfolio returns.
No parameters such as covariances or correlations are estimated.

Firstly, historical portfolio returns are calculated for trading days t — 249 to t, using the
portfolio weights of day ¢t (in our case all weights are equal):

Tore = Re-w

where ¢, is a column vector containing 250 historical portfolio returns, R, is a 250 x 21
matrix containing the most recent 250 returns of the 21 financial portfolios and w is the
weight-vector.

- The 1%-quantile estimate for trading day t + 1 is simply the 1%-quantile of the 250 most
recent portfolio returns. In other words, the quantile estimate is based on the second- and
third-lowest portfolio returns of the rolling window of 250 trading days.
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« Copula-based models allow for modelling separately the univariate distribution functions of the
marginal distributions and their copula, i.e. their ,dependence structure®.

« Marginal distributions:
In our analysis these are the 21 return distributions of the financial assets, modelled as
empirical distributions based on the 250 most recent volatility-adjusted return observations.

« Copulas:

— Gaussian copula: this is the copula implied by a multivariate Gaussian distribution (Gaussian
marginal distributions combined with a Gaussian copula).
It has one (matrix) parameter: the correlation matrix P, (capital “Rho”)

— Student t copula: this is the copula implied by a multivariate Student t distribution. It has two
parameters: the correlation matrix P, and the degrees of freedom v (“nu”, a scalar
parameter). The lower v the stronger is the tail dependence. In fact, the Gaussian copula can
be considered a special case of the Student t copula where v — .



- 2.4. Copula-based models

Copula Calibration

We use two methods to calibrate copula parameters:

— The pseudo-log-likelihood method
Genest and Rivest (1993) and McNeil (2005)
The most widely used calibration method
Computationally intensive

— The method-of-moments (MoM)
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+  Pseudo-log-likelihood method

« Avariant of the maximum likelihood estimation (MLE). In practice one often maximises the log-
likelihood as this is computationally less intensive and the optimisation yields the same results.

« In contrast to the standard MLE, one does not make any assumption on the specific functional form of
the marginal distribution functions in the pseudo-log-likelihood method.

- Rather, the observations are transformed into so-called pseudo-observations in a first step. The
pseudo-observations u;, for asseti € (1, ...,21) and trading day t € (1, ..., 250) are calculated from the
volatility-adjusted returns 7; ; as

1
e = g Dy e
where 15 .z . is an indicator function that take on a value of 1 if 7; ¢ < 7; ; and a value of 0 otherwise.
In our analysis T = 250.

* In other words, the rank of the observation is divided by 251 to obtain u; ;.

10
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+  Pseudo-log-likelihood method
« For the Gaussian copula, the correlation matrix P, is calibrated via numerical optimisation as

250 21 1
P; = argmaxp,, Zt:1 < In ¢p, <q>—1(ut) + Zi:1 In <¢(¢_1(ui, t)))))

with In the natural logarithm function, ¢p . the probability density function of a multivariate standard
normal distribution with parameter (i.e. correlation matrix) P;, ¢ the density function of a univariate
standard normal distribution, @~ the quantile function of a univariate standard normal distribution and

u; = (ul,t:uz,t' ---'u21,t) a vector representing the joint pseudo-observations for trading day ¢.

«  We use R-package copula and, here, function
fitCopula (normalCopula (dim=21, dispstr="un”), method="mpl”)
to perform the maximume-log-likelihood estimation.
We refer to the so-calibrated model as model Gauss_MLE.

11
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*  Pseudo-log-likelihood method Small simulation study: Calibration time for Student ¢ copula
We simulate random data of 250 sets for different dimensions
« Student t copula (Gaussian copula rvs, only one scenario)

20

Unfortunately, the
MLE-calibration of a

[
[5,]

high-dimensional Student t copula
is computationally very

intensive, i.e. time-consuming. ,
« Hence, we choose an alternative . I I
e _ | =
14 15 13 19 20 21

approach: 12 13

computing time in hours
=
(=]

un

dimensions

— use P; as a substitute for P,

- Setv =3 without calibration mnnmm

«  We refer to so-calibrated model computing time in h

as model t_ MLE. data source: Aussenegg and Cech (2012), table 1

12
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*  “method-of-moments” (MoM): Not so computationally intensive.
Gaussian copula
the elements p; ;; of the Gaussian copula parameter P; are calibrated as the pairwise
Spearman’s rank-correlation coefficient between asset returns i and j, pg ;;
6 . Pij

Pq,ij = Psjij = Earcsm?
where p;; is the pairwise (Pearson) correlation coefficient between the pseudo-
observations.
Student t copula
the elements p, ;; of the Student t copula parameter P, are calibrated as

(1
Ptij = SIn (E ﬂPr,ij)

where p, ;;is the pairwise Kendall's rank-correlation coefficient (Kendall’s tau).
The MoM allows only the calibration of P,. We set the second parameter v equal to 3.

13
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Copula simulation

For our four models (models 3.3, 3.b, 4.a and 4.b) and for every trading day analysed
we simulate one million 21-dimensional tuples.

To reduce the variance of the Monte Carlo simulation we additionally construct
antithetic variates (see e.g. Glasserman, 2003, pp. 205ff.)

This results in two million simulated values of 21-tuples with

a;,d

where i € (1, ...,2,000,000) and d € (1, ...,21)

14
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2.4. Copula-based models F H e 59

«  Copula simulation
In a further step, we use the empirical distribution of the 250 most recent volatility-
adjusted return observation of every asset to simulate quantiles of asset returns.

- Then, we calculate for every simulated scenario portfolio returns

21
7&pf,s = zd_lwd ) Fd_l(ﬁi,d)

where w, are the portfolio-weights and F;*(; ;) are the empirical quantile functions of
asset returns.

- Finally, we estimate next day’s return quantile as the 1%-quantile of the two million
simulated portfolio returns.

15
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We conduct hit tests for the estimates of the 1%-return quantiles.

A “hit” (or “exception”) refers to those days where the realised return on trading day
t + 1is below the quantile-estimate based on data up to trading day t.

Obviously, in a good model this should happen in roughly 1% of the cases.
We use two types of hit tests:

— Unconditional hit tests
consider only the proportion of hits

— Conditional hit tests
examine the clustering of hits

For every model we create hit-sequences I = (I, I,, ..., I;) where I, = 0 if no hit is
observed and I, = 1 if a hit is observed on trading day t. Number of hitsn = Y_, I,.

17



. :)T R’:;I;}d: gciences
3. Hlt teStS F H BFIV|enna

Unconditional hit tests, Hy: p = 0.01 where p = —

— hit test based on a binomial distribution (Campbell 2007, p.6)

— Kupiec test (Kupiec, 1995) , also known as proportion-of-failure (PoF) test

Conditional hit tests additionally test the null hypothesis Hy: 74; = 741

where 7, is the probability of observing a hit on day ¢ (“today”) conditional of
observing no hit on day t — 1 (“yesterday”), i.e. P(I; = 1|I,_; = 0)

andty, = P(; =1|l,_; = 1).

— Christoffersen test (Christoffersen, 1998)

18
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4. Data F H |:|V|el'""5l

 Daily log-returns of 21 financial assets from 5 January 1990 to 26 November 2024.

« The first 500 tuples are used for model-calibration.

* Quantiles are estimated for the period from 7 January 1992 to 26 November 2024, i.e.
for 8,252 trading days, based on the return observations up to the trading day before.

- The financial assets can broadly be classified into five classes:

i.  Foreign exchange (three assets) 1: EUR 8: Wal Mart 15: Palladium
ii. Blue-chip stocks (six assets) &iCh iy 2HExon 168M
o 3: JPY 10: SP500 17:1Y
iii. Stock-indices (three assets) PR 11: DAX30 18: 2y
iv. Commaodities (three assets) 5: Walt D. 12: Nikkei225 19: 3Y

. : : 6: IBM 13: Ol 20: 5Y
v. Fixed-income instruments (six assets) : |

7: Verizon 14: Gold 21:10Y

- We take a USD-investor perspective.

20



4. Data

- 21 financial assets

— Low volatilities for fixed-income, high
for stocks, indices, commodities.

— All returns are leptokurtic and not
normally distributed (Jarque-Bera).

— Pearson-correlations range from
-0.240 (DAX30, 5Y) to
0.953 (2V, 3Y).

lowest returns
12 Mar. 2020 20 Apr. 2020 16 Mar. 2020 9 Mar. 2020 18. Mar 2020

-6,57% -5.72% -4.93% -4.37% -4.28%
21
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5. Results

- Summary of model results

Table 3: Number of hits, proportion of hits, unconditional hit tests, and Christoffersen test

Variance-Covariance models

Historical Simulation

Copula based models

models
Model VC unadj VC_ EWMA VC adj |[HS unadj HS adj | Gauss MLE t MLE Gauss_ MoM t MoM
Panel A: Hits
no. of hits 169 163 155 134 120 135 91 136 90
p 2.05% 1.98% 1.88% 1.62% 1.45% 1.64% 1.10% 1.65% 1.09%
@@(KC_unadj) 1 0.968 0.971 1.122 1.042 1.004 1.108 1.002 1.110
ES/ES(VC_unadj) 1 0.968 0.971 1.142 1.067 1.008 1.133 1.006 1.135

qG/q(VC_unadj): the average ratio of the models’ quantile estimates G in relation to the

quantile estimate of model VC_unadj

ES/ES(VC_unadj): the average ratio of the models’ estimates for the mean lowest 2.5%

return observations ES in relation to the corresponding estimates of model VC_unadj

23
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+ Copula-based simulation models, MoM (models Gauss_MoM, t_MoM)

000

-0.01
x

1% quantile estimates f portfolio returns
-0.04

-0.068

—— Gauss_MoM X
— f_MoM

-0.07

T T T T T T T T T T T T T T T T
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

n 136

p1.65% 1.09% o



- 5. Results

« Copula-based simulation models
(models Gauss_MLE, t_MLE, Gauss_MoM, t_MoM)

— In all cases the quantile estimate of the meta-
Student t models are below those of the meta-
Gaussian models.

On average 10.4% (model t_MLE) respectively
10.7% (model t_MoM).

— Accordingly, the proportion of hits is lower.

— The results of the MLE-models are similar to
those of the MoM-models.

1.00 1.02 1.04

0.98

ni\lerSit
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G_MLE/G_MoM t MLE/t MoM
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5. Results

Unconditional hit tests

Variance-Covariance models

Historical Simulation

Copula based models

models
Model VC unadj VC_ EWMA VC adj |HS unadj HS adj | Gauss MLE t MLE Gauss_MoM t MoM
Panel B: Campbell test
z 9.57 8.90 8.02 5.70 4.15 5.81 0.94 5.92 0.83

ngﬂ. * % % % * %k * % * * ok
Panel C: Kupiec test

LR, (a) (a) (a) 27.29 15.08 28.28 0.85 29.29 0.67

ngn. %k * % * * ok

null hypothesis can be rejected at the 1% (**) or the 5% (*) significance level.

(@ The Kupiec and the Christoffersen test do not provide results due to the large number of hits and the large number of two hits on two consecutive trading days (T;;). Based on the

proportion of hits and the number of hits on two consecutive trading days we conclude that the null hypotheses for both tests can be rejected.

- We cannot reject the null hypothesis for the meta-Student t models.

- We reject the null hypothesis for all other models at the 1% significance level.

26
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* Christoffersen test
Variance-Covariance models Historical Simulation Copula based models
models
Model VC_unadj VC_EWMA VC_ adj |HS_ unadj HS_adj | Gauss_ MLE t MLE Gauss_MoM t _MoM
Panel D: Christoffersen test
T4 15 9 11 11 5 8 3 8 3

LRy () (a) (@) 19.22 4.20 9.53 2.67 9.35 2.76

ngn. # * * % %

LR, (2) (a) (@) 46.51 19.28 37.81 3.52 38.63 3.42

ngn' * % * A * % * &

null hypothesis can be rejected at the 1% (**) or the 5% (*) significance level.

(@ The Kupiec and the Christoffersen test do not provide results due to the large number of hits and the large number of two hits on two consecutive trading days (T;;). Based on the

proportion of hits and the number of hits on two consecutive trading days we conclude that the null hypotheses for both tests can be rejected.

- We cannot reject the null hypotheses for the meta-Student t models.

27



5. Results

Expected Shortfall:
in addition to the 1% return quantile (= 99% Value-at-Risk VaR), we calculate the
mean return below the 2.5% return quantile (= 97.5% Expected Shortfall ES).

On average the two values do not deviate strongly from each other.

Table 4: Ratio of 97.5% Expected Shortfall (ES) and 99% VaR

Variance-Covariance models | Historical Simulation models Copula based models
Model HS unadj HS adj Gauss MLE t MLE Gauss_MoM t MoM
Mean 1.0050 1.0263 1.0305 1.0096 1.0097 1.0279 1.0280
Median 1.0050 1.0145 1.0216 1.0092 1.0092 1.0288 1.0288
Min 1.0046 0.8655 0.8701 0.9909 0.9920 1.0030 1.0038
Max 1.0055 1.3767 1.3077 1.0844 1.0873 1.0880 1.0891

Notes: This table presents the ratio of 97.5% ES/99% VaR. Mean and median numbers above (below) one indicate that 97.5%
ES estimates are larger (smaller) than the 99% VaR estimates.

28



5. Results

Expected Shortfall:

Q
o]
= ;
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= | ; o :
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o | N i
o 1
§ :
T T T T T T T
VvC HS_unadj HS_adj Gauss_MLE Gauss_MoM t MLE t_MoM

Figure 3: Ratio of 97.5% Expected Shortfall (ES) and 99% VaR

Notes: This figure shows the ratio of 97.5% Expected Shortfall (ES) and 99% VaR. For values above (below) 1 the 97.5% ES is
larger (smaller) than the 99% VaR. The median ratio (thick line in the middle) reveals that using the 97.5% ES is on average
quite comparable with the 99% VaR and on average only about 0.5 to 3% above the 99% VaR.
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«  Computing time:
— The MLE- and MoM-models yield similar results.
— However, the latter are far less computationally intensive.
Table 5: Computing time for copula-based models
Panel A: Real data - Daily computing time in seconds, average over all 8,252 trading days
MLE Estimation MoM Estimation Simulation
Estimation of EGARCH Gaussian and Student t Gaussian Student t Gaussian Student t
volatility adj. returns copula copula copula copula copula
Time (seconds) 7.6 152 0.03 0.32 11.66 20.16

30
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«  Computing time:
— The computational advantage of MoM models also holds for higher dimensions
— Simulation study:
« Simulate 250 d-dimensional realisations of a Gaussian copula with pairwise correlation
parameter p; ; = 0.5 Vi,j where i # j

- Estimate copula parameters and simulate copulas (10° realisations and 10° antith. v.)

Panel B: Simulation — Computing time for one copula estimation and copula simulation in seconds for different dimensions

MLE Copula Estimation MoM Copula Estimation Copula Simulation
Dimensions Gaussian and Student ¢ Gaussian Student t Gaussian Student t
10 7.28 0.01 0.12 2.56 5.15
20 60.62 0.02 0.45 5.32 10.54
50 2,561.67 0.80 3.82 14.82 27.71
100 72,722.11 12.67 24.58 34.54 59.92
200 269.77 326.26 94.72 147.37
300 1,451.70 1,566.16 166.89 247.87
400 4,649.56 4,922.28 267.29 374.23

Notes: The calculations are performed on a Windows 10 desktop computer with an Intel Core i7-5930K 3.5 GHz CPU and a
32GB memory. In Panel B the MLE estimation time for dimensions above 100 is not available due to the exponential growth 31

in computing time.
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« We analyse the accuracy of nine models to estimate the one-day 1% return quantile.

+  Five benchmark models
(three different variance-covariance models and two historical simulation models)

« Four copula models that combine volatility-adjusted returns with
a Gaussian or a Student t copula.

« Copula calibration: pseudo-log-likelihood (MLE) or method-of-moments (MoM)

« These models generate the daily return distribution of a 21-dimensional equally weighted mixed
asset portfolio.

«  The meta-Student t model calibrated with the method of moments outperforms the other
models.

— It shows the best accuracy regarding the hit proportion and
the independence of hit observations and

— it is computationally efficient
33
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attention!
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+ We use two types of copulas: p” =0.4: (meta-)Gaussian meta—Student t
— Gaussian copula 3
— Student t copula ol
« The Student t copula displays
positive “tail dependence”: -3
It assigns a higher probability to . s 0 3 -3 0 3
joint extreme events than does the P = 0:8 (meta-)Gaussian meta-Student t
Gaussian copula. 3
» The plots show standard normal ol
distributions combined by Gaussian X
and Student t copulas. -3

-3 0 3 -3 0 3
Source: Cech (2006)
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