# Pricing Climate Event Risks and Opportunities in the Options Market

40th AWG Workshop, Innsbruck

Matthias Reiner

WU Vienna and VGSF

September 12, 2025

# CLIMATE POLICY EVENTS AFFECT MARKETS Fortune<sup>1</sup>:



SUBSCRIBE

# Paris Climate Deal Sinks Coal Stocks, Lifts Renewable Energy

#### BY REUTERS

Introduction

•000

December 14, 2015 at 12:35 PM EST



#### BBC news<sup>2</sup>:



Page last updated at 17:15 GMT, Monday, 21 December 2009





# Copenhagen deal causes EU carbon price fall

Carbon prices in Europe dropped to a six-month low after agreements made at the Copenhagen climate summit to cut emissions disappointed traders.



COPENHAGEN SUMMIT 2009

KEY STORIES

· Copenhagen depresses carbon price

paris-climate-deal-sinks-coal-stocks-lifts-renewable-energy/

<sup>&</sup>lt;sup>1</sup>https://fortune.com/2015/12/14/

# INTRODUCTION

Introduction 0000

### The idea of the paper in a nutshell:

- Climate policy events such as UN climate summits or national elections affect markets.
- Ex post there are (stock) market reactions pricing in the new information.
  - Example: Following the 2015 Paris Agreement, green stocks rose while brown stocks declined (Adler et al., 2025).
- ► Are such climate policy / transition risks priced *ex ante* in the option market?
- ▶ Does the price of a stock option spanning a climate policy event depend on the "greenness" of the firm?

Introduction 0000

# RESULTS

- ► In the days leading up to the Paris Agreement, OTM options were more expensive for S&P 500 firms with higher absolute climate change exposure.
- ► There is a non-monotonic relationship between firms' climate change exposure and option expensiveness preceding the event.
- ► Similar results are obtained using a larger panel of UN climate change conferences.
- ► The results hold for a different sample of European firms (STOXX Europe 600).
- ► Firms' option-implied risk premia preceding the Paris Agreement vary significantly with climate change exposure.

# **CONTRIBUTION**

### New perspective:

- ► Existing research suggests that options are more expensive for "brown" firms (Ilhan et al. (2021) or Cao et al. (2021))
  - I show theoretically and empirically that the uncertain outcomes of events affect both "green" and "brown" firms.

# New methodology:

- Existing papers use traditional approaches (portfolio sorting) to measure the relation between firm's greenness and option prices
  - I apply an event based approach and compare price of affected options with neighboring unaffected options, bringing a methodology similar to Kelly et al. (2016) to the cross-section.

#### New "greenness" measure:

▶ Instead of ESG scores I use textual-analysis "greenness" scores.

# Empirical methodology

6 / 29

Outlook

0

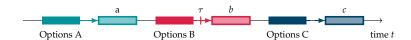
Robustness tests

# OPTION DATA

- ► OptionsMetrics provides implied volatilities (= rescaled option prices) via option price file or volatility surface file.
- ▶ I first focus on OTM Call and Put options of S&P 500 firms using deltas between 0.1 and 0.5 (OTM options have higher sensitivity to volatility changes than ITM options).

# **EMPIRICAL APPROACH**

- ightharpoonup At time  $\tau$ , a climate policy event occurs.
- ▶ Options B are *traded before* the event, but *expire after*  $\tau$  at time b.
- "Control" options A or C both trade and expire either before or after τ, so are not directly affected by the event (options C maybe indirectly). I use 30 days to maturity vsf options.
- ► *Hypothesis*: The expensiveness of options B on a firm *i*, measured relative to options A and C on the same firm, will depend on the firm's climate policy exposure.



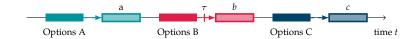
### IMPLIED VOLATILITY DIFFERENCE

- ▶ I compute the average implied volatilites  $IV_{ar}^i$ ,  $IV_b^i$ , and  $IV_c^i$  for firm i over 15 trading days using options A, B, and C.
- ▶ The firm's implied volatility difference  $IVD^i$  is:

$$IVD^{i} = IV_{b}^{i} - \frac{1}{2}(IV_{a}^{i} + IV_{c}^{i})$$
 (1)

▶ Alternative measure  $IVD_{ba}^{i}$  - excludes options C (relies only on information available prior to  $\tau$ ):

$$IVD_{ba}^{i} = IV_{b}^{i} - IV_{a}^{i} \tag{2}$$



- ► I obtain CO<sub>2</sub> Scope 1 and Scope 2 CO<sub>2</sub> emissions from CDP<sup>3</sup> and textual-analysis based climate change exposure measures from the paper by Sautner et al. (2023)
- ightharpoonup I use them to obtain "brownness" scores  $B^i$ , and run regressions to see if a higher level of brownness is associated with higher implied volatility difference.

$$IVD^{i} = \alpha + \beta B^{i} + \gamma CV^{i} + \varepsilon_{i}$$
(3)

 $ightharpoonup CV^i$  stands for optional control variables (e.g.  $\beta_{Market}$ , B/M, Size)

# Theoretical framework

# THEORETICAL FRAMEWORK - QUICK OVERVIEW

► I assume the log return of stock i follows a factor model with a greenness factor  $F_{g,t}$  ("brown" – "green"):

$$R_{i,t} = \beta_{i,g} F_{g,t} + \beta_i' F_t + \varepsilon_i$$
 (4)

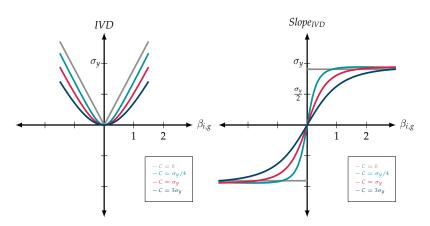
- ▶ "browner" firms:  $\beta_{i,g} > 0$ , but "greener" firms:  $\beta_{i,g} < 0$ . Both are thus exposed to jump risks of the *greenness* factor.
- ► There is an expected shock to  $F_{g,t}$  with variance  $\sigma_y^2$  to  $F_{g,t}$  at the time of the policy event  $\tau$  that affects  $Var(R_{i,t=\tau}) \propto \beta_{i,g}^2 \sigma_y^2$ .
- ▶ Similarly, the return volatility over an (option) period spanning the climate event depends non-monotonically on  $\beta_{i,g}$ , and so does the implied volatility difference.





# THEORETICAL PLOTS

▶ Volatility difference and slope for different exposures to the *greenness* (or climate risk) factor ( $\beta_{i,g}$ ) and different levels of noise and variance of other factors (C).



# **INSIGHTS**

- ▶ Blindly regressing IVD on a measure of climate policy risk exposure  $\beta_{i,g}$  could lead to misleading results due to the non-monotonic relationship between IVD and  $\beta_{i,g}$ .
- ▶ When performing regressions, we need to carefully consider what measure is used to proxy for  $\beta_{i,g}$  and which part of the graph is covered (left half, right half, entire graph?).
- ► This problem could be addressed by taking the absolute value of  $\beta_{i,g}$  which effectively means we are reflecting the left part of the graph of IVD on the right part of the graph, thereby eradicating non-monotonicity problems.
- ► All else equal, the coefficient of  $\beta_{i,g}$  will be closer to zero with more noise and variance in other factors.

# **Empirical results**

# DATA, VARIABLES, HYPOTHESES

- ► CO<sub>2</sub> emissions data from CDP
  - Higher emissions signal higher transition risk, but lower emissions don't signal higher opportunities, covers  $\beta_{i,g}^+$ . I thus expect a positive relation to IVD.
- Firm level climate change exposures from Sautner et al. (2023) and theoretical coverage of  $\beta_{i,g}$ 
  - 1.  $cc\_expo$  and  $cc\_risk$  measure exposure to climate change, cover  $|\beta_{i,g}|$
  - 2.  $rg\_cc\_expo$  measures exposure to regulatory risk, covers  $\beta_{i,g}^+$
  - 3.  $op\_cc\_expo$  measures exposure to climate change opportunities, covers  $|\beta_{i,o}^-|$ 
    - $\rightarrow$  All above variables are positive. I expect a positive relation.
  - 4. *cc\_senti* measures sentiment of firms towards climate change, positive and negative, covers entire range of  $\beta_{i,g}$  ( $-\beta_{i,g}$ ).
    - $\rightarrow$  I expect a negative relation to  $\it IVD$  for "low" sentiment firms and a positive relation for "high" sentiment firms.

# Paris Agreement 2015

- ► The Paris agreement was reached on Saturday, December 12, 2015 during the COP21 climate conference in Paris.
- ▶ On the following Monday there were large return differences between stocks of "green" and "brown" firms (see introduction).
- $\blacktriangleright$  As a start, I choose December 10, 2015 as the eventdate  $\tau$ . I use monthly vsf options with 30 days to maturity. For each firm i I compute the average  $IV^i$  of OTM options with open interest in the previous 15 trading days. I proceed in a similar way using neighboring options to compute  $IVD^i$  and  $IVD^i_{ba}$

# Paris results *IVD*

| Dep. Var.:                | IVD                |        |         |         |         |         |  |
|---------------------------|--------------------|--------|---------|---------|---------|---------|--|
| Model:                    | (1)                | (2)    | (3)     | (4)     | (5)     | (6)     |  |
| Scope1Em                  | 0.066***<br>(4.12) |        |         |         |         |         |  |
| Scope2Em                  | , ,                | 0.115  |         |         |         |         |  |
|                           |                    | (1.11) |         |         |         |         |  |
| CCExposure                |                    |        | 2.88*** |         |         |         |  |
| •                         |                    |        | (3.63)  |         |         |         |  |
| CCRisk                    |                    |        | , ,     | 54.0*** |         |         |  |
|                           |                    |        |         | (4.50)  |         |         |  |
| CCExposure <sup>Reg</sup> |                    |        |         | ()      | 24.7*** |         |  |
|                           |                    |        |         |         | (2.60)  |         |  |
| CCExposure <sup>Opp</sup> |                    |        |         |         | (2.00)  | 6.73*** |  |
| CCEAposure                |                    |        |         |         |         | (5.55)  |  |
|                           |                    |        |         |         |         | (3.33)  |  |
| Observations              | 345                | 335    | 679     | 679     | 679     | 679     |  |
| $R^2$                     | 0.013              | 0.0001 | 0.028   | 0.033   | 0.006   | 0.040   |  |

Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

# PARIS RESULTS IVD<sub>ha</sub>

Dep. Var.:

(2)

0.282 (1.64)

329

0.007

(3)

2.13\*\*

(2.35)

656

0.010

 $IVD_{ba}$ 

(4)

53.3\*\*\* (2.78)

(5)

22.2\* (1.79)

656

0.008

(6)

4.87\*\*\* (2.87)

656

0.009

19 / 29

*CCExposure* 

0.087\*\*\*

(3.00)

Model: (1)

Scope1Em

Scope2Em

**CCRisk** 

CCExposure<sup>Reg</sup>

 $CCExposure^{Opp}$ 

Observations

 $R^2$ 

656

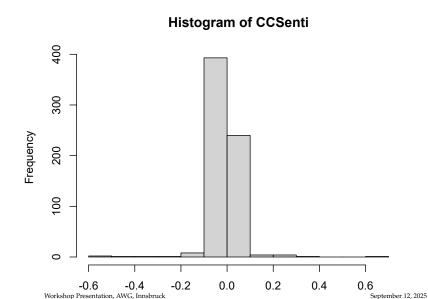
0.011



339

0.048

# HISTOGRAM OF CCSenti



200

20 / 29

# RESULTS WITH CCSenti

# Non-monotonic relationship between *IVD* and CC sentiment.

| Dep. Variable:   | IVD     |          |                        |                            |                       |  |
|------------------|---------|----------|------------------------|----------------------------|-----------------------|--|
| cc_senti sample: | full    | full     | high $[q_{0.66}, q_1]$ | mid $[q_{0.33}, q_{0.66}]$ | low $[q_0, q_{0.33}]$ |  |
| Variables        |         |          |                        |                            |                       |  |
| CCSenti          | 11.5*** |          |                        |                            |                       |  |
|                  | (4.78)  |          |                        |                            |                       |  |
| CCSenti          |         | -1.56    | 10.1***                | -563.2                     | -11.1***              |  |
|                  |         | (-0.454) | (2.79)                 | (-1.26)                    | (-3.07)               |  |
| Fit statistics   |         |          |                        |                            |                       |  |
| Observations     | 665     | 665      | 225                    | 228                        | 212                   |  |
| R <sup>2</sup>   | 0.017   | 0.0003   | 0.016                  | 0.002                      | 0.032                 |  |

HC robust standard errors, t-stats in parenthesess Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

Results are similar when splitting into 5 subsamples.



Outlook

# Robustness tests

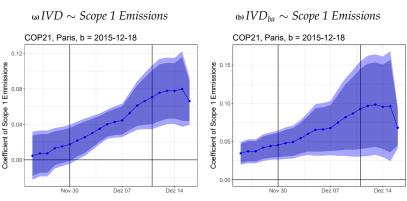
 Methodological approach
 Theoretical framework
 Empirical results
 Robustness tests
 Outlook

 00000
 00000
 000000
 0 ● 0
 0

# Varying Eventdate au

#### How does the significance depend on the choice of the event date $\tau$ ?

*Note:* The plots display rolling regression coefficients based on 15-trading-day windows before each event date  $\tau$ , as indicated on the x-axes, and 15-trading-day windows of adjacent options used to compute IVD and  $IVD_{ba}$ 



# EXTERNAL VALIDITY - PANEL REGRESSION RESULTS

### I use climate change conferences from 2009 to 2020

| Dependent Variable:       | IVD                      |                        |                        |                        |                    |                        |
|---------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------|------------------------|
| Model:                    | (1)                      | (2)                    | (3)                    | (4)                    | (5)                | (6)                    |
| Scope1Em                  | 0.042**                  |                        |                        |                        |                    |                        |
|                           | (2.51)                   |                        |                        |                        |                    |                        |
| CCExposure                |                          | -0.301                 |                        |                        |                    |                        |
| CCRisk                    |                          | (-0.639)               | 11.1**                 |                        |                    |                        |
| CCNISK                    |                          |                        | (2.19)                 |                        |                    |                        |
| CCExposure <sup>Reg</sup> |                          |                        | (2.17)                 | -2.86                  |                    |                        |
| ,                         |                          |                        |                        | (-1.14)                |                    |                        |
| CCExposure <sup>Opp</sup> |                          |                        |                        | ` ′                    | -0.903             |                        |
|                           |                          |                        |                        |                        | (-1.17)            |                        |
| CCSenti                   |                          |                        |                        |                        |                    | -0.753                 |
| 0                         | 0.120                    | 0.000                  | 0.057                  | 0.005                  | 0.001              | (-0.451)               |
| $\beta_{\text{market}}$   | -0.139<br>(-0.422)       | -0.090<br>(-0.327)     | -0.076<br>(-0.278)     | -0.085<br>(-0.310)     | -0.091<br>(-0.330) | -0.088<br>(-0.320)     |
| B/M                       | 0.211                    | 0.882***               | 0.885***               | 0.886***               | 0.879***           | 0.886***               |
| D/141                     | (0.607)                  | (2.70)                 | (2.71)                 | (2.71)                 | (2.69)             | (2.71)                 |
| log(market cap)           | $-1.32 \times 10^{-5}$ * | $-8.53 \times 10^{-7}$ | $-8.54 \times 10^{-7}$ | $-8.64 \times 10^{-7}$ |                    | $-8.57 \times 10^{-7}$ |
|                           | (-1.86)                  | (-0.401)               | (-0.405)               | (-0.406)               | (-0.400)           | (-0.403)               |
| Fixed-effects             |                          |                        |                        |                        |                    |                        |
| year                      | Yes                      | Yes                    | Yes                    | Yes                    | Yes                | Yes                    |
| firm                      | Yes                      | Yes                    | Yes                    | Yes                    | Yes                | Yes                    |
| Observations              | 2,811                    | 6,097                  | 6,097                  | 6,097                  | 6,097              | 6,097                  |
| $\mathbb{R}^2$            | 0.379                    | 0.382                  | 0.382                  | 0.382                  | 0.383              | 0.382                  |

Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1



- ► Climate policy events can influence the pricing of both "green" and "brown" firms *ex ante* in the options market.
- ► Results are robust in a sample of European firms (STOXX Europe 600) and when controlling for standard factors (market, size, value).
- ► Following Liu et al. (2022), I compute option-implied risk premia which significantly correlate with firms' climate change exposure in the days before the Paris Agreement.
- ► Limitations: the analysis currently focuses only on UN climate change conferences and on U.S. and European options.
- ► Further research could expand the scope of events, firms, and regions analyzed.

# REFERENCES I

- Adler, K., Rehbein, O., Reiner, M., & Zeng, J. (2025). Market-based green firms. *Available at SSRN 5160004*.
- Cao, J., Goyal, A., Zhan, X., & Zhang, W. E. (2021). *Unlocking esg premium from options* (Tech. Rep.). Swiss Finance Institute.
- Ilhan, E., Sautner, Z., & Vilkov, G. (2021). Carbon tail risk. *The Review of Financial Studies*, 34(3), 1540–1571.
- Kelly, B., Pástor, L., & Veronesi, P. (2016). The price of political uncertainty: Theory and evidence from the option market. *The Journal of Finance*, 71(5), 2417–2480.
- Liu, H., Tang, X., & Zhou, G. (2022). Recovering the fomc risk premium. *Journal of Financial Economics*, 145(1), 45–68.

# REFERENCES II

Ramelli, S., Wagner, A. F., Zeckhauser, R. J., & Ziegler, A. (2021). Investor rewards to climate responsibility: Stock-price responses to the opposite shocks of the 2016 and 2020 us elections. *The Review of Corporate Finance Studies*, 10(4), 748–787.

Sautner, Z., Van Lent, L., Vilkov, G., & Zhang, R. (2023). Firm-level climate change exposure. *The Journal of Finance*, 78(3), 1449–1498.

► Let's assume the log return of a stock *i* follows a factor structure:

$$R_{i,t} = \beta_{i,g} F_{g,t} + \beta_i' F_t + \varepsilon_i$$
 (5)

- $ightharpoonup eta_{i,g}$  is the exposure to a presumed climate transition risk or *greenness* factor  $F_{g,t}$
- Assume that the greenness factor  $F_{g,t}$  is created as a brown-minus-green portfolio return based on firms with high climate transition risk and low climate transition risk.  $\rightarrow$  "browner" firms:  $\beta_{i,g} > 0$  whereas "greener" firms:  $\beta_{i,g} < 0$ .
- vector  $\beta_i'$  comprises exposures to other potentially relevant factors  $F_t$  (e.g. market, size, book-to-market, etc.)
- $\varepsilon_i$  is a residual following a normal distribution with mean zero,  $\varepsilon_i \sim N(0, \sigma_{\varepsilon_i}^2)$

- ▶ Further assume the other factors  $F_t$  are constructed in such a way that they are orthogonal to the climate factor and to any other factor, e.g. by using the Gram-Schmidt process.  $\rightarrow CoV(F_{k,t}, F_{l,t}) = 0$  for  $k \neq l$ .
- ightharpoonup A climate policy event happens at time  $\tau$
- ▶ the factors  $F_{k,t}$ ,  $k \in \{1 ... K\}$  comprised in  $F_t$  follow independent normal distributions  $F_{k,t} \sim N(\mu_k, \sigma_k^2) \ \forall \ k, t$
- ►  $F_{g,t}$  follows  $F_{g,t} = X_t + \xi_t$  where:

$$X_t \sim N(\mu_g, \sigma_g^2), \quad \xi_t = \begin{cases} 0, & \text{if } t \neq \tau \\ Y \sim N(\mu_y, \sigma_y^2), & \text{if } t = \tau \end{cases}$$
 (6)

► Assuming independence of the shocks we then get the following expression for the variance of stock *i*′s return :

$$Var(R_{i,t}) = \beta_{i,g}^{2}(\sigma_{g}^{2} + \mathbf{1}_{\{t=\tau\}}\sigma_{y}^{2}) + \sum_{k=1}^{K} \beta_{i,k}^{2}\sigma_{k}^{2} + \sigma_{\varepsilon_{i}}^{2}$$
 (7)

 $\rightarrow$  firms with higher squared exposure to the climate risk factor  $(\beta_{i,g}^2)$  exhibit higher variance at the time of the climate policy event.

► The log return of the stock over the remaining lifetime of an option until maturity T is given by  $\sum_{t}^{T} R_{i,t}$  and due to independence of the  $R_{i,t}$  its variance is given by  $\sum_{t}^{T} Var(R_{i,t})$ 

▶ The difference of the stock's variance over the lifetime of an option b spanning the climate event at  $\tau$  and its variance over the lifetime of an option a with the same time to maturity that doesn't span the event is consequently given by:

$$\sum_{t,\tau \in t}^{T_b} Var(R_{i,t}) - \sum_{t,\tau \notin t}^{T_a} Var(R_{i,t}) = \beta_{i,g}^2 \sigma_y^2$$
 (8)

► Assume an option expires in *N* days, the volatility difference of stock *i* over the lifetime of the option spanning the event is

$$IVD_{i} = \sqrt{\beta_{i,g}^{2}(N\sigma_{g}^{2} + \sigma_{y}^{2}) + N\left(\sum_{k=1}^{K} \beta_{i,k}^{2}\sigma_{k}^{2} + \sigma_{\varepsilon_{i}}^{2}\right) - \sqrt{\beta_{i,g}^{2}N\sigma_{g}^{2} + N\left(\sum_{k=1}^{K} \beta_{i,k}^{2}\sigma_{k}^{2} + \sigma_{\varepsilon_{i}}^{2}\right)}}$$