



### The Decay of cay

38th Workshop of the Austrian Working Group on Banking & Finance September 23, 2023

Moritz Dauber & Jochen Lawrenz

# Overview

#### 1) Motivation:

Investigate changes in the impact of the consumption-wealth ratio (cay) on asset returns since its inception in Lettau and Ludvigson (2001)

### 2) Extension:

The obvious decay of the "classcial" *cay* motivates the construction of alternative versions of *cay* 

### 3) Explanation:

A structural shift in the underlying cointegration relation explains the poor performance over the last two decades

Campbell and Mankiw (1989) derive an equation for the consumption-wealth ratio as a function of expected future returns on total wealth of the form

$$c_t - w_t = E_t \sum_{i=1}^{\infty} \rho^i (r_{w,t+i} - \Delta c_{t+i}),$$

where  $c_t - w_t$  denotes the log consumption-wealth ratio,  $\Delta$  is the difference operator and  $\rho$  is the steady-state value of invested wealth to total wealth, i.e., (W - C)/W.

# The definition of *cay*

Since the consumption-wealth ratio is **not** directly observable, we need a **proxy**. This is where *cay* enters the stage.

Lettau and Ludvigson (2001) define

$$cay_t \coloneqq c_t - \alpha_a a_t - (1 - \alpha_a)y_t$$

where  $c_t$ ,  $a_t$  and  $y_t$  are log consumption, log asset wealth and log labor income, respectively.

 $\alpha_a$  represents the average share of asset wealth in total wealth.

# The estimation of *cay*

Lettau and Ludvigson (2001) exploit the cointegrating relationship between consumption, asset wealth and labor income to estimate a single cointegrating vector of parameters via a DLS specification including eight leads and lags, i.e.,

$$c_t = \alpha + \beta_a a_t + \beta_y y_t + \sum_{i=-8}^8 b_{a,i} \Delta a_{t-i} + \sum_{i=-8}^8 b_{y,i} \Delta y_{t-i} + \varepsilon_t.$$

Then,

$$\widehat{cay}_t \coloneqq c_t - \widehat{\beta}_a a_t - \widehat{\beta}_y y_t$$

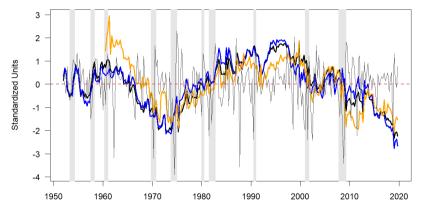
is the estimated version of *cay* and by that a proxy for the consumption-wealth ratio,  $c_t - w_t$ .

# Comparison with benchmark papers

| Panel A: Cointegrating parameters |                                  |                      |                      |                      |  |  |  |  |
|-----------------------------------|----------------------------------|----------------------|----------------------|----------------------|--|--|--|--|
|                                   |                                  | LL2001               | HL2006               | DC2010               |  |  |  |  |
| $\widehat{eta}_{a}$               | 0.035<br>(0.987)                 | 0.310***<br>(11.700) | 0.275***<br>(27.500) | 0.274***<br>(11.417) |  |  |  |  |
| $\widehat{eta}_{m{y}}$            | 0.906 <sup>***</sup><br>(23.950) | 0.590***<br>(23.920) | 0.616***<br>(61.600) | 0.684***<br>(28.500) |  |  |  |  |
| Sample                            | 1952:1-2019:4                    | 1952:4-1998:3        | 1952:4-2002:4        | 1946-2006            |  |  |  |  |

Note:

\*p<0.1; \*\*p<0.05; \*\*\*p<0.01


**Table:** The table reports the cointegrating parameters from different papers using various sample periods. Newey and West (1987) corrected *t*-statistics appear in parentheses. Hereby LL2001 denotes Lettau and Ludvigson (2001), HL2006 denotes Hahn and Lee (2006) and DC2010 represents Della Corte et al. (2010).

# Alternative specifications

Additionally, we consider two alternative versions of *cay*:

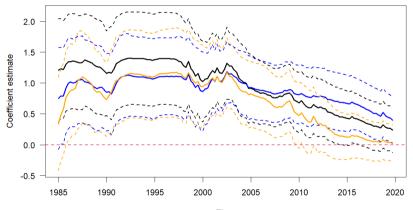
- $\widehat{cay}_t^{\text{top10}}$ : Accounting only for the consumption, asset wealth and labor income of the wealthiest 10% of households in order to capture the marginal investor in stock markets more accurately. Employs a method from Lettau et al. (2019)
- $\widehat{cay}_t^{\text{unfil}}$ : Using unfiltered NIPA consumption according to the method of Kroencke (2017) applying the uncertainty measure of Jurado et al. (2015)

## cay over time

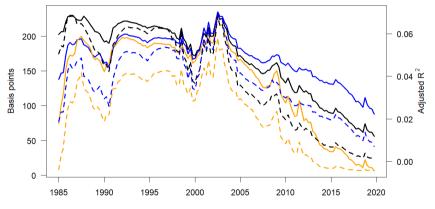


Time

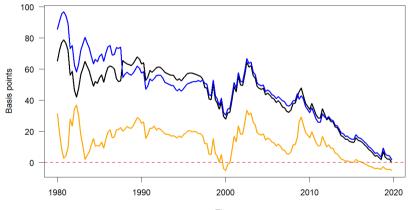
7


We regress *H*-quarter ahead returns of the "market portfolio", i.e., the CRSP NYSE/NYSE MKT/NASDAQ/Arca Value-Weighted Market Index, in excess of the "risk-free rate", i.e., the 3-Month Treasury Bill Secondary Market Rate, on the one-quarter lagged value of  $\widehat{cay}_t$ .

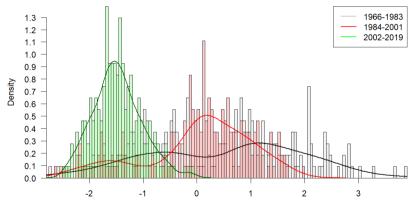
Thus, our regression equation is given by


$$r_{t+1} - r_{f,t+1} + \dots + r_{t+H} - r_{f,t+H} = \alpha + \beta \cdot \widehat{cay}_t + \varepsilon_t$$

|                           | Dependent variable: $r_{t+1} - r_{f,t+1} + \cdots + r_{t+H} - r_{f,t+H}$ |          |              |          |          |          |               |
|---------------------------|--------------------------------------------------------------------------|----------|--------------|----------|----------|----------|---------------|
|                           | H = 1                                                                    | H = 2    | <i>H</i> = 4 | H = 8    | H = 12   | H = 16   | <i>H</i> = 20 |
| $\widehat{cay}_t$         | 0.240                                                                    | 0.467    | 0.813        | 1.537    | 2.152    | 2.970    | 3.520         |
|                           | (1.079)                                                                  | (1.060)  | (0.692)      | (0.703)  | (0.662)  | (0.965)  | (0.991)       |
|                           | [0.001]                                                                  | [0.004]  | [0.008]      | [0.019]  | [0.030]  | [0.050]  | [0.055]       |
| . 10                      |                                                                          |          |              |          |          |          |               |
| $\widehat{cay}_t^{top10}$ | 0.398*                                                                   | 0.777*   | 1.482        | 2.889    | 3.817    | 4.968**  | 5.592*        |
|                           | (1.762)                                                                  | (1.744)  | (1.290)      | (1.517)  | (1.629)  | (2.286)  | (1.914)       |
|                           | [0.007]                                                                  | [0.015]  | [0.031]      | [0.066]  | [0.086]  | [0.123]  | [0.121]       |
| <b>C1</b>                 |                                                                          |          |              |          |          |          |               |
| $\widehat{cay}_t^{unfil}$ | 0.023                                                                    | -0.012   | -0.245       | -0.594   | -0.599   | -0.550   | -0.875        |
|                           | (0.127)                                                                  | (-0.036) | (-0.304)     | (-0.459) | (.0.307) | (-0.258) | (.0.394)      |
|                           | [-0.004]                                                                 | [-0.004] | [-0.002]     | [0.002]  | [0.000]  | [-0.001] | [0.002]       |


# The decay of *cay* - in sample




## The decay of *cay* - in sample



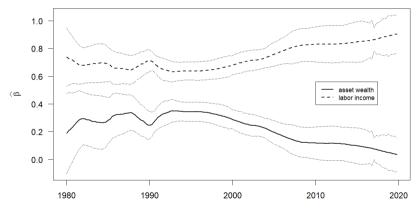
## The decay of *cay* - out of sample



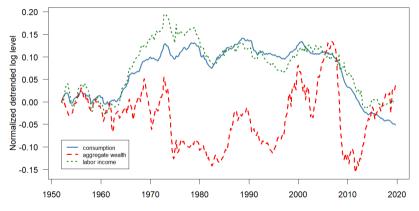
# The structural shift visualized



Standardized Units


It appears that the negative development of *cay* at the end of our sample is not just an artefact but a development that has been going on over roughly the last two decades!

It appears that the negative development of *cay* at the end of our sample is not just an artefact but a development that has been going on over roughly the last two decades!


#### **Main finding**

The decay of *cay* is the result of an ongoing structural shift in the underlying cointegrating relationship between consumption, aggregate wealth and labor income.

# Drifting apart...



## The reason for the shift



## Robustness checks

- Various other cointegrating techniques
  - Johansen (1988, 1991) procedure
  - Park's (1992) Canonical Cointegrating Regression (CCR)
  - Phillips and Hansen's (1990) Fully Modified Estimator (FME)
- Regressing excess returns directly on consumption, aggregate wealth and labor income as in Lettau and Ludvigson (2005)
- Using PCE consumption instead of NDS consumption
- Specifically account for financial wealth by considering *cday* from Sousa (2010)
- Adding volatility to the forecast regression as in Guo (2006)



# Thank you for your attention!

Moritz Dauber & Jochen Lawrenz

## References I

- Campbell, J. Y. and Mankiw, N. G. (1989). Consumption, Income, and Interest Rates: Reinterpreting the Time Series Evidence. *NBER Macroeconomics Annual*, 4:185–216.
- Della Corte, P., Sarno, L., and Valente, G. (2010). A Century of Equity Premium Predictability and the Consumption–Wealth Ratio: An International Perspective. *Journal of Empirical Finance*, 17(3):313–331.
- Guo, H. (2006). On the Out–of–Sample Predictability of Stock Market Returns. *The Journal of Business*, 79(2):645–670.
- Hahn, J. and Lee, H. (2006). Interpreting the Predictive Power of the Consumption–Wealth Ratio. *Journal of Empirical Finance*, 13(2):183–202.
- Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. *Journal of Economic Dynamics and Control*, 12(2-3):231–254.

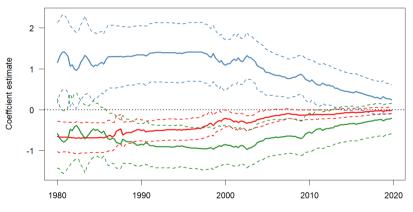
## References II

- Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. *Econometrica*, 59(6):1551.
- Jurado, K., Ludvigson, S. C., and Ng, S. (2015). Measuring Uncertainty. *American Economic Review*, 105(3):1177–1216.
- Kroencke, T. A. (2017). Asset Pricing without Garbage. *The Journal of Finance*, 72(1):47–98.
- Lettau, M. and Ludvigson, S. C. (2001). Consumption, Aggregate Wealth and Expected Stock Returns. *The Journal of Finance*, 56(3):815–849.
- Lettau, M. and Ludvigson, S. C. (2005). Expected Returns and Expected Dividend Growth. *Journal of Financial Economics*, 76(3):583–626.
- Lettau, M., Ludvigson, S. C., and Ma, S. (2019). Capital Share Risk in U.S. Asset Pricing. *The Journal of Finance*, 74(4):1753–1792.

## References III

Newey, W. K. and West, K. D. (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. *Econometrica*, 55(3):703.

Park, J. Y. (1992). Canonical Cointegrating Regressions. *Econometrica*, 60(1):119.


- Phillips, P. C. B. and Hansen, B. E. (1990). Statistical Inference in Instrumental Variables Regression with I(1) Processes. *The Review of Economic Studies*, 57(1):99.
- Sousa, R. M. (2010). Consumption, (Dis) Aggregate Wealth and Asset Returns. Journal of Empirical Finance, 17(4):606–622.

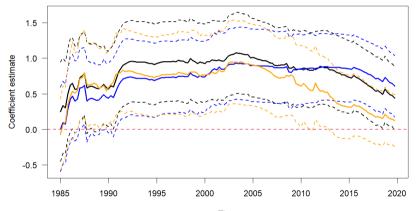
# Appendix - Robustness I

|             | Dependent variable: $r_{t+1} - r_{f,t+1} + \cdots + r_{t+H} - r_{f,t+H}$ |          |          |          |           |            |               |  |
|-------------|--------------------------------------------------------------------------|----------|----------|----------|-----------|------------|---------------|--|
|             | H = 1                                                                    | H = 2    | H = 4    | H = 8    | H = 12    | H = 16     | <i>H</i> = 20 |  |
| Ct          | 0.238                                                                    | 0.468    | 0.848    | 1.689    | 2.455     | 3.446      | 4.320         |  |
|             | (1.060)                                                                  | (1.024)  | (0.708)  | (0.741)  | (0.696)   | (0.735)    | (1.009)       |  |
|             |                                                                          |          |          |          |           |            |               |  |
| $a_t$       | -0.015                                                                   | -0.054   | -0.158   | -0.315   | -0.426    | -0.544     | -0.765        |  |
|             | (-0.323)                                                                 | (-0.597) | (-0.570) | (-0.469) | (-0.483)  | (-0.398)   | (-0.850)      |  |
|             |                                                                          |          |          |          |           |            |               |  |
| Уt          | -0.211                                                                   | -0.388   | -0.637   | -1.277   | -1.887    | -2.696     | -3.275        |  |
|             | (-0.926)                                                                 | (-0.870) | (-0.538) | (-0.596) | (-0.604)  | (-0.756)   | (-0.930)      |  |
|             |                                                                          |          |          |          |           |            |               |  |
| $\bar{R}^2$ | -0.006                                                                   | -0.002   | 0.007    | 0.027    | 0.041     | 0.064      | 0.077         |  |
| Note:       |                                                                          |          |          |          | *p<0.1; * | *p<0.05; * | ***p<0.01     |  |

1

# Appendix - Robustness I




# Appendix - Robustness II

|                         | Dependent variable: $r_{t+1} - r_{f,t+1} + \cdots + r_{t+H} - r_{f,t+H}$ |              |         |              |         |          |          |  |
|-------------------------|--------------------------------------------------------------------------|--------------|---------|--------------|---------|----------|----------|--|
|                         | H = 1                                                                    | <i>H</i> = 2 | H = 4   | <i>H</i> = 8 | H = 12  | H = 16   | H = 20   |  |
| $\widehat{cay}_t^{PCE}$ | 0.438                                                                    | 0.937*       | 2.017   | 4.202*       | 5.710** | 6.935*** | 7.759*** |  |
|                         | (1.617)                                                                  | (1.855)      | (1.480) | (1.830)      | (2.116) | (3.462)  | (3.303)  |  |
|                         | [0.007]                                                                  | [0.019]      | [0.047] | [0.114]      | [0.156] | [0.193]  | [0.188]  |  |

Note:

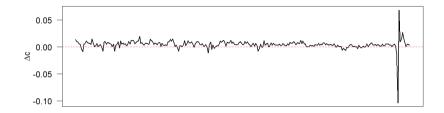
\*p<0.1; \*\*p<0.05; \*\*\*p<0.01

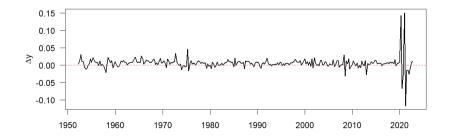
# Appendix - Robustness II



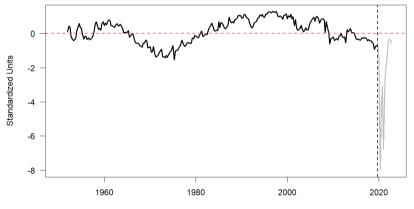
# Appendix - Robustness III

|                                 | Dependent variable: $r_{t+1} - r_{f,t+1} + \cdots + r_{t+H} - r_{f,t+H}$ |                              |                              |                               |                               |                               |                               |  |
|---------------------------------|--------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|
|                                 | H = 1                                                                    | <i>H</i> = 2                 | H = 4                        | H = 8                         | H = 12                        | H = 16                        | <i>H</i> = 20                 |  |
| $\widehat{cday}_t^{\text{NDS}}$ | 0.285                                                                    | 0.560                        | 0.994                        | 1.883                         | 2.477                         | 3.102                         | 2.996                         |  |
|                                 | (1.225)                                                                  | (1.138)                      | (0.805)                      | (0.732)                       | (0.571)                       | (0.605)                       | (0.586)                       |  |
|                                 | [0.001]                                                                  | [0.005]                      | [0.010]                      | [0.022]                       | [0.030]                       | [0.041]                       | [0.030]                       |  |
| $\widehat{cday}_t^{\text{PCE}}$ | 0.471<br>(1.630)<br>[0.008]                                              | 1.023*<br>(1.751)<br>[0.021] | 2.244*<br>(1.686)<br>[0.053] | 4.728**<br>(2.137)<br>[0.127] | 6.318**<br>(2.381)<br>[0.166] | 7.464**<br>(2.513)<br>[0.194] | 7.682**<br>(2.293)<br>[0.162] |  |
|                                 |                                                                          | . ,                          | ]                            |                               |                               | L - J                         |                               |  |


Note:


\*p<0.1; \*\*p<0.05; \*\*\*p<0.01

# Appendix - Robustness IV


|                   | Dependent variable: $r_{t+1} - r_{f,t+1} + \cdots + r_{t+H} - r_{f,t+H}$ |              |         |         |            |           |               |  |
|-------------------|--------------------------------------------------------------------------|--------------|---------|---------|------------|-----------|---------------|--|
|                   | H = 1                                                                    | <i>H</i> = 2 | H = 4   | H = 8   | H = 12     | H = 16    | <i>H</i> = 20 |  |
| $\widehat{cay}_t$ | 0.238                                                                    | 0.453        | 0.794   | 1.502   | 2.137      | 2.949     | 3.481         |  |
|                   | (1.072)                                                                  | (1.009)      | (0.670) | (0.654) | (0.654)    | (0.945)   | (0.973)       |  |
| 2                 |                                                                          |              |         |         |            |           |               |  |
| $\sigma_{m,t}^2$  | 0.178                                                                    | 1.216        | 1.886   | 2.978   | 1.875      | 2.866     | 5.249**       |  |
|                   | (0.215)                                                                  | (1.478)      | (1.529) | (1.557) | (0.854)    | (1.368)   | (2.518)       |  |
|                   |                                                                          |              |         |         |            |           |               |  |
| $\bar{R}^2$       | -0.003                                                                   | 0.009        | 0.015   | 0.031   | 0.031      | 0.056     | 0.077         |  |
| Note:             |                                                                          |              |         |         | *p<0.1; ** | p<0.05; * | **p<0.01      |  |

Appendix - Covid-19





Appendix - Covid-19

