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Motivation

Crypto-influencers — state to know about lucrative projects, coins, tokens ...

‘Gems’: relatively unknown, low market capitalization, massive potential

Often state to buy/invest in the mentioned project too — promotion reinforcement
Selling tips rarely if ever given

20,000 and 13,000 distinct cryptocurrencies on coingecko.com and coinmarketcap.com
(as of July 2022), huge number of small/tiny crypto projects (by MC = market

capitalization), also 'scam tokens’ and ’shitcoins’ are listed ...

Some videos end with explicit shopping list, buying tips, top 5 ...
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Motivation

Crypto-influencers — state to know about lucrative projects, coins, tokens ...

— ’'Gems': relatively unknown, low market capitalization, massive potential

— Often state to buy/invest in the mentioned project too — promotion reinforcement
— Selling tips rarely if ever given

— 20,000 and 13,000 distinct cryptocurrencies on coingecko.com and coinmarketcap.com
(as of July 2022), huge number of small/tiny crypto projects (by MC = market

capitalization), also 'scam tokens’ and ’shitcoins’ are listed ...

— Some videos end with explicit shopping list, buying tips, top 5 ...

Hypothesis

Reactions on price and trading volume can be observed after YouTubers promote crypto-coins
with a small market capitalization in their videos.
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Literature & Research Questions

Related works on the topic 'Social Media and Cryptos’

Qo

© 06 ©6 0 ©

Shen et al. [2019]: 'Does Twitter predict Bitcoin?’

Naeem et al. [2021]: 'Does Twitter happiness sentiment predict cryptocurrency?’
Aslanidis et al. [2021]: "The link between Bitcoin and Google Trends attention’
Aslanidis et al. [2022]: "The link between cryptocurrencies and Google Trends attention’
Vakilinia [2022]: 'cryptocurrency giveaway scam with YouTube live stream’

Prasad et al. [2022]: 'Sentiment Analysis on cryptocurrency using YouTube comments’

Research questions

What effect can be observed, after popular crypto-influencers release YouTube-videos in which
they mention tokens/coins with a small market capitalization

a) on the tokens/coins price

b) on the trading volume?

c) Does the market capitalization (MC) of the mentioned tokens/coins matters?
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Data

— Observation period: 08/24/2021 - 02/28/2022

Channel name # subscribers | # events
Bitboy Crypto 1.45m 17
Alex Becker's Channel 1.30m 35
Max Maher 896,000 7
CryptoBanter 577,000 156
Lark Davis 487,000 7
Altcoin Buzz 374,000 28
Crypto Love 243,000 55

— YouTube channel criteria: 1. sufficient subscriber (more than 200,000)

2. occasionally covering lower cap coins and token

(as of 07/26,/2022)

— Event = any time one of the YouTube channels listed above mentions a low-cap coin or

token in one of their videos

— Low-cap: coins/tokens with a MC <USD 100m at the time of the video release

— 305 events in total, median MC USD 28m

— Data on MC, price and trading volume from Coingecko.com and Coinmarketcap.com

— Data on Royalton Crix Index from royalton-crix.com — proxy for the crypto market

in
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Methodology |

— Standard event study, video release day = event day, t = 7

— Event window: 11-days, centered around the release-date, {r — 5,7 —4,...,7 + 5}
— Estimation window: 40 days prior to the event window, {7 — 45,7 —44,...,7 — 6}
— Price reactions: measured by daily log-returns, re = In(P¢/P:—1),

— Trading behavior: daily dollar trading volume, normalized by its mean (due to highly
heterogeneity in terms of levels)
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Methodology |

— Standard event study, video release day = event day, t = 7

— Event window: 11-days, centered around the release-date, {r — 5,7 —4,...,7 + 5}
— Estimation window: 40 days prior to the event window, {7 — 45,7 —44,...,7 — 6}
— Price reactions: measured by daily log-returns, re = In(P¢/P:—1),

— Trading behavior: daily dollar trading volume, normalized by its mean (due to highly
heterogeneity in terms of levels)

1. Returns estimation window time series of token i:
Market model:

rig =+ Bi - rme + €t (1)

«a, B —  Regression coefficients
Imt —  Market returns derived from CRIX data
€ —  Error term

— Abnormal returns (AR):

ARje = riy — & — Bj + (2)

&j, Bi  —  Regression coefficient estimators
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Methodology I

— Average abnormal returns (AAR):

N
1
AAR: = ;AR,-t (3)
N —  Number of events (305)

— Standard deviation of AAR:

s 1/2
> (AAR: — AAR)? (4)
t=—45

olAAR] = | o

AAR —  arithmetic mean of AAR in the estimation window

— t-test for AAR in the event window:

_ AAR:
" o[AAR]

®)
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Methodology Il

2. Trading volume:

— Abnormal trading volume:

AV, = Vi~V (6)

Vi —  average trading volume in the estimation window

— Sign test (CorradoZivney, 1992):

Git = sign(AVj; — median(AV;)) ()
— test statistic with trading volume abnormal from zero asymptotically follows a normal
distribution:
1 G;
tG,t = N ; U[g] (8)
1 g 1 2
oG] = \j 51 t:z_:% (\/N z/\/: Gft) (9)

N —  Number of events (304)
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Results | - Price reaction

total
(n = 305)
t AAR (in %) CAAR (in %)
5 1.759* 1.759%
(1.901) (1.901)
4 0.829 2.588%
(0.896) (1.978)
3 -0.9 1.688
(-0.973) (1.053)
2 0.427 2.115
(0.462) (1.143)
1 1.092 3.207
(1.18) (1.55)
0 0.49 3.697
(0.53) (1.631)
1 6.729%** 10.426%**
(7.274) (4.259)
5 -0.354 10.073***
(-0.382) (3.849)
3 -2.896*** 7.177*F**
(-3.13) (2.586)
2 -1.397 5.779*%
(-1.51) (1.975)
5 -1.011 4.769
(-1.093) (1.554)

Price reaction for the total sample (N = 305). Event day set as
day t = 0. AAR = average abnormal returns, CAAR =
cumulative average abnormal returns. Returns as percentages,
*¥* ** and * denote significance at 1, 5 and 10 percent level,
t-values in parenthesis.
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in

CAAR

CAAR YouTube coins vs. cumulated market returns (CRIX)
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Results Il - Price reaction in subsamples by MC

MC <USD 15m
(n = 96)

MC USD 15m - 45m
(n = 109)

MC >USD 45m
(n = 100)

AAR (in %) | CAAR (in %)

AAR (in %) | CAAR (in %)

AAR (in %) | CAAR (in %)

-5

-3

-2
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Results Il - Price reaction in subsamples by MC

MC <USD 15m MC USD 15m - 45m MC >USD 45m
(n = 96) (n = 109) (n = 100)
t | AAR (in %) | CAAR (in%) | AAR (in %) | CAAR (in %) | AAR (in %) | CAAR (in %)
= 2.707%% 2.707%% 1137 1.137 1.682 1.682
(2.041) (2.041) (0.852) (0.857) (1.338) (1.268)
7 -0.562 2.145 1557 2.694 1396 3.078
(-0.424) (1.143) (1.167) (1.436) (1.11) (1.641)
= 0.166 2311 2.229 0.465 ~0.403 2,675
(0.125) (1.006) (-1.671) (0.202) (-0.321) (1.164)
2 2.195 £.506% 0.177 0.642 ~0.940 1735
(1.654) -1.698 (0.133) (0.242) (-0.748) (0.654)
r 1511 6.017%% 2.164 2.806 0.274 1461
(1.139) (2.028) (1.622) (0.946) (-0.218) (0.492)
7 0.582 6.508%* 0.751 3.557 0.190 1.651
(0.439) (2.031) (0.563) (1.095) (0.151) (0.508)
a 9.014%%% 156137 %% 7.653% %% 112117 3.751%%% 5.402
(6.795) (4.448) (5.737) (3.194) (2.983) (1.539)
2 -1.686 13.027%%% 1379 12 580%%% 0.737 4.665
(-1.271) (3.711) (1.033) (3.355) (-0.586) (1.243)
2 1743 12.184%F% 3315%% 0 274%% 3.364F 1.301
(-1.314) (3.061) (-2.485) (2.33) (-2.676) (0.327)
a 1724 10.46%* 1716 7.558% 20.565 0.736
(-1.299) (2.493) (-1.287) (1.802) (-0.449) (0.175)
5 1491 8.969%% 1042 6.516 20426 0.310
(-1.124) (2.038) (-0.781) (1.481) (-0.339) (0.07)

Price reaction for the subsamples (by market capitalization). Event day set as day t = 0. AAR = average abnormal
returns, CAAR = cumulative average abnormal returns. Returns as percentages, *** ** and * denote significance
at 1, 5 and 10 percent level, t-values in parenthesis.
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Results Il - Price reaction in subsamples by M_

Cumulative Average Abnormal Returns
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Results Il - Price reaction in subsample 'Crypto Banter’

Crypto Banter
(n = 156)
t | AAR (in %) | CAAR (in %)
5 3.477%* 3.477F*
(2.683) (2.683)
7 0515 3.992%
(0.397) (2.178)
3 (0.610) 4(.603*)*
0.471 2.05 .
Price Reaction 'Crypto Banter'
0.366 4.968*
2 (0.282) (1.917)
P 2.424% 7.302%% i Lo
(1.87) (2.551) 1% 0.800%
0 1.748 9.141***
(1.349) (2.879) e osom &
1 5.644%%* 14.785%** o 12%
(4.355) (4.312) g o
5 1.478 16.263*** % 0.200% £
(1.14) (4.436) e % £
a T4.406% %% 11.837%%* 3 - / 4 0.000% %
-3.415 3.044 o 2
(-1,303) 1(0.534*)* w s
4 (-1.005) (2.57) ” V odos
: 0.890 11.424%% N e
(0.686) (2.657) s 403 2 1 0 1 2 3 4 s
t
Price reaction for the Subsample 'events by crypto == CAAR Banter coins -cumulative market returns (CRIX)

banter’. Event day set as day t = 0, AAR = average
abnormal returns, CAAR = cumulative average abnormal
returns. Returns as percentages, *** ** and * denote
significance at the 1, 5 and 10 percent level, t-values in
parenthesis.
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Results IV - Volume reaction

total
(n = 304)
t AAV
I 0.230
(0.459)
P 0.301
(0.885)
3 0.341
(0.951)
P 0.299
(0.557)
N 0.296
(0.852)
0 0.323*
(1.508)
q 1.008%%*
(3.933)
2 0.726***
(2.655)
3 0.358
(1.082)
0.326*
41 (1
3 0.412%
(1.377)

Volume Reaction - total sample, subgroups by MC and subgroup 'Crypto Banter’. Event day set as t = 0. Results denoted as
average abnormal volume, *** ** and * denote significance at 1, 5 and 10 percent level, z-values in parenthesis.
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Results IV - Volume reaction

total MC <USD 15m | MC USD 15m - 456m | MC >USD 45m
(n = 304) (n = 95) (n = 109) (n = 100)
t AAV AAV AAV AAV
= 0.230 0.206 0.237 0.245
(0.459) (0) (0.424) (1.107)
- 0.301 0.257 0.225 0.427
(0.885) (1.022) (0.742) (1.217)
B 0.341 0.424%% 0.055 0.574%
(0.951) (1.93) (0) (1.328)
2 0.299 0.477 0.121 0324
(0.557) (1.136) (0) (0.775)
3 0.296 0.213 0.404 0.259
(0.852) (1.022) (0.954) (0.885)
i 0.323% 0.408* 0.352%* 0.212%
(1.508) (1.59) (1.908) (1.55)
q 1.008%% T.505%F% 0.9120%%% 0.556%
(3.933) (3.293) (6.361) (3.431)
2 0.726%%% 0.901%% 0.8467%% 0.429%%
(2.655) (2.158) (4.559) (2.103)
2 0.358 0.321 0.448%* 0.295%
(1.082) (0.454) (1.696) (1.439)
A 0.326 0.139 0.582%%% 0.223%%
(1.377) (0.114) (2.544) (1.882)
: 0.412% 0.190 0.741%% 0.266%%
(1.377) (0.454) (2.226) (1.882)

Volume Reaction - total sample, subgroups by MC and subgroup 'Crypto Banter’. Event day set as t = 0. Results denoted as

average abnormal volume, *** ** and * denote significance at 1, 5 and 10 percent level, z-values in parenthesis.
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Results IV - Volume reaction

total MC <USD 156m | MC USD 15m - 45m | MC >USD 45m | Crypto Banter
(n = 304) (n = 95) (n = 109) (n = 100) (n = 156)
t AAV AAV AAV AAV AAV
= 0.230 0.206 0.237 0.245 0.160
(0.459) (0) (0.424) (1.107) (-0.605)
- 0.301 0.257 0.225 0.427 0.091
(0.885) (1.022) (0.742) (1.217) (-0.908)
B 0.341 0.424%% 0.055 0.574% 0.161
(0.951) (1.93) (0) (1.328) (-0.605)
2 0.299 0.477 0.121 0.324 0.078
(0.557) (1.136) (0) (0.775) (-0.968)
T 0.296 0213 0.404 0.259 0.257
(0.852) (1.022) (0.954) (0.885) (-0.847)
i 0.323% 0.408* 0.352%* 0.212% 0.262
(1.508) (1.59) (1.908) (1.55) (0.968)
q 1.008%% T.505%F% 0.912%%% 0.556% 0.769%%%
(3.933) (3.293) (6.361) (3.431) (3.874)
2 0.726%%% 0.901%% 0.8467%% 0.429%% 0.628%%*
(2.655) (2.158) (4.559) (2.103) (2.421)
2 0.358 0.321 0.448%% 0.205* 0.292
(1.082) (0.454) (1.696) (1.439) (1.211)
A 0.326* 0.139 0.582%%% 0.223%% 0.384
(1.377) (0.114) (2.544) (1.882) (1.029)
: 0.412% 0.190 0.741%% 0.266%% 0.255
(1.377) (0.454) (2.226) (1.882) (0.061)

Volume Reaction - total sample, subgroups by MC and subgroup 'Crypto Banter’. Event day set as t = 0. Results denoted as
average abnormal volume, *** ** and * denote significance at 1, 5 and 10 percent level, z-values in parenthesis.
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Results IV - Volume Reaction _

Volume Reaction
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Average Abnormal Volume
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Conclusion

O YouTubers have a kind of (short-lived) price impact on small-cap coins (MC <USD 100m)

@ The smaller the MC, the larger the effect

O Similar results for trading volume (peak 1 day after the event, largest effect for tiny coins)
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